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28359 Bremen, Germany

Received 17 July 1996

Abstract. The bi–Hamiltonian structure of the relativistic Toda lattice is exploited to introduce
some new integrable lattice systems. Their integrable discretizations are obtained by means of the
general procedure proposed recently by the author. Bäcklund transformations between the new
systems and the relativistic Toda lattice (in both the continuous and discrete time formulations)
are established.

1. Introduction

This paper is devoted to integrable equations of classical mechanics. More precisely, we
shall deal here with equations of motion in the Newtonian form.

We introduce two new integrable continuous time lattice systems, and present several
novel integrable discrete time systems.

The first continuous time system is

ẍk = ẋk+1 exp(xk+1− xk)− exp(2(xk+1− xk))− ẋk−1 exp(xk − xk−1)

+ exp(2(xk − xk−1)). (1.1)

The second is

ẍk = −ẋ2
k

(
ẋk+1 exp(xk+1− xk)− ẋk−1 exp(xk − xk−1)

)
. (1.2)

To the author’s knowledge, these systems have not appeared in the literature, despite
their beauty and possible physical applications. However, they are closely related to another
well known integrable lattice, namely the relativistic Toda lattice:

ẍk = ẋk+1ẋk
g2 exp(xk+1− xk)

1+ g2 exp(xk+1− xk) − ẋkẋk−1
g2 exp(xk − xk−1)

1+ g2 exp(xk − xk−1)
. (1.3)

More precisely, we shall find a kind of Bäcklund transformation connecting (1.1) and (1.3),
and another one connecting (1.2) and (1.3).

We now write down integrable discretizations we propose for the lattices (1.1), (1.2).
In the difference equations below,xk = xk(t) are supposed to be functions of the discrete

† E-mail address: suris@cevis.uni-bremen.de

0305-4470/97/051745+17$19.50c© 1997 IOP Publishing Ltd 1745



1746 Y B Suris

time t ∈ hZ, and x̃k = xk(t + h), xk˜ = xk(t − h). Discretization of the first lattice (1.1)
yields

exp(̃xk − xk)− exp(xk − xk˜ )
= − 1

1− h exp(xk+1˜ −xk) + h exp(xk+1− xk)+ 1

1− h exp(xk − x̃k−1)

−h exp(xk − xk−1). (1.4)

Discretization of the second lattice (1.2) yields

h

exp(̃xk − xk)− 1
− h

exp(xk − xk˜ )− 1

= exp(xk+1− xk)− exp(xk+1˜ −xk)− exp(xk − xk−1)+ exp(xk − x̃k−1).

(1.5)

The same B̈acklund transformations as for the continuous time systems relate these
systems of difference equations to the discrete time relativistic Toda lattice [1]:

exp(̃xk − xk)− 1

exp(xk − xk˜ )− 1
=
(
1+ g2 exp(xk+1− xk)

)(
1+ g2 exp(xk+1˜ −xk)

) (1+ g2 exp(xk − x̃k−1)
)(

1+ g2 exp(xk − xk−1)
) . (1.6)

A modification of the construction leading to the above discrete time systems allows us
to derive several further nice discretizations. For example, for the lattice (1.1) we have

exp(̃xk − 2xk + xk˜ ) =
(
1+ h exp(xk+1− xk)

)(
1− h exp(xk+1˜ −xk)

)(
1+ h exp(xk − xk−1)

)(
1− h exp(xk − x̃k−1)

) (1.7)

and for the relativistic Toda lattice (1.3) we have

exp(−x̃k + xk)− 1

exp(−xk + xk˜ )− 1
=
(
1+ g2 exp(xk+1− xk)

)(
1+ g2 exp(xk+1˜ −xk)

) (1+ g2 exp(xk − x̃k−1)
)(

1+ g2 exp(xk − xk−1)
) . (1.8)

(The last system resembles the previous discretization of the relativistic Toda lattice (1.6)
very closely; however, the relation between them is far from trivial).

All the above systems (continuous and discrete time) may be considered either on an
infinite lattice (k ∈ Z), or on a finite one (16 k 6 N ). In the latter case one of two types
of boundary conditions may be imposed: open-end (x0 = ∞, xN+1 = −∞) or periodic
(x0 ≡ xN , xN+1 ≡ x1). We shall be concerned only with finite lattices here, consideration
of the infinite ones being to a large extent similar.

One remark: the ‘list’ of references at the end of this paper might look strange; in fact
most of the references cited in [1] are relevant, and we omit them here solely to save space.
The interested reader is advised to consult these references.

2. The simplest flows of the relativistic Toda hierarchy and their bi-Hamiltonian
structure

In this section we consider the two simplest flows of the relativistic Toda hierarchy. All the
results here and in section 3 are not new, but are collected in the form convenient for our
present purposes. For the relevant references see [1].

The first flow of the relativistic Toda hierarchy is

ḋk = dk(ck − ck−1) ċk = ck(dk+1+ ck+1− dk − ck−1). (2.1)
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The second flow of the relativistic Toda hierarchy is

ḋk = dk
(

ck

dkdk+1
− ck−1

dk−1dk

)
ċk = ck

(
1

dk
− 1

dk+1

)
. (2.2)

They may be considered either under open-end boundary conditions (dN+1 = c0 = cN = 0),
or under periodic ones (all the subscripts are taken (modN ), so thatdN+1 ≡ d1, c0 ≡ cN ,
cN+1 ≡ c1).

We now discuss a Hamiltonian structure for both flows (2.1), (2.2). It is easy to see
that they are Hamiltonian with respect to two different compatible Poisson brackets. The
first bracket is linear, namely

{ck, dk+1}1 = −ck {ck, dk}1 = ck {dk, dk+1}1 = ck (2.3)

(only the non-vanishing brackets are written down), and the Hamiltonian functions
generating the flows (2.1), (2.2) in this bracket are equal to

H
(1)
+ =

1

2

N∑
k=1

(dk + ck−1)
2+

N∑
k=1

(dk + ck−1)ck H
(1)
− = −

N∑
k=1

log(dk). (2.4)

The second Poisson bracket is quadratic, namely

{ck, ck+1}2 = −ckck+1 {ck, dk+1}2 = −ckdk+1 {ck, dk}2 = ckdk (2.5)

the corresponding Hamiltonian functions being

H
(2)
+ =

N∑
k=1

(dk + ck) H
(2)
− =

N∑
k=1

dk + ck
dkdk+1

. (2.6)

We now turn to the integrable discretizations of the flows (2.1), (2.2) derived in [1].
An integrable discretization of the flow (2.1) is given by the difference equations

d̃k = dk ak+1− hdk+1

ak − hdk c̃k = ck ak+1+ hck+1

ak + hck (2.7)

whereak = ak(c, d) is defined as a unique set of functions satisfying the recurrence relation

ak = 1+ hdk + hck−1

ak−1
(2.8)

together with an asymptotic relation

ak = 1+ h(dk + ck−1)+O(h2). (2.9)

In the open-end case, due toc0 = 0, from (2.8) we obtain the following finite continued
fractions expressions forak:

a1 = 1+ hd1 a2 = 1+ hd2+ hc1

1+ hd1

· · · aN = 1+ hdN + hcN−1

1+ hdN−1+ hcN−2

1+ hdN−2+
. . .

+ hc1

1+ hd1

.

In the periodic case equations (2.8), (2.9) uniquely define theak as N -periodic infinite
continued fractions. It can be proved that forh sufficiently small these continued fractions
converge and their values satisfy (2.9).
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An integrable discretization of the flow (2.2) is given by the difference equations

d̃k = dk+1
dk − hdk−1

dk+1− hdk c̃k = ck+1
ck + hdk

ck+1+ hdk+1
(2.10)

wheredk = dk(c, d) is defined as a unique set of functions satisfying the recurrence relation

ck

dk
= dk − h− hdk−1 (2.11)

together with an asymptotic relation

dk = ck

dk
+O(h). (2.12)

In the open-end case we obtain from (2.11) the following finite continued fractions
expressions fordk:

d1 = c1

d1− h d2 = c2

d2− h− hc1

d1− h

· · · dN−1 = cN−1

dN−1− h− hcN−2

dN−2− h−
. . .

− hc1

d1− h

.

In the periodic case (2.11), (2.12) uniquely define thedk asN -periodic infinite continued
fractions. It can be proved that forh sufficiently small these continued fractions converge
and their values satisfy (2.12).

It can be proved [1] that the maps (2.7), (2.10) are Poisson with respect to both brackets
(2.3), (2.5).

3. Lax representations

Recall [1] that both the continuous time systems (2.1), (2.2) and discrete time systems
(2.7), (2.10) admit Lax representations, the Lax matrices being the same for the both cases.

The following statement holds. Introduce twoN by N matrices depending on the phase
space coordinatesck, dk and (in the periodic case) on the additional parameterλ:

L(c, d, λ) =
N∑
k=1

dkEkk + λ
N∑
k=1

Ek+1,k, (3.1)

U(c, d, λ) =
N∑
k=1

Ekk − λ−1
N∑
k=1

ckEk,k+1. (3.2)

HereEjk stands for the matrix whose only non-zero entry at the intersection of thej th row
and thekth column is equal to 1. In the periodic case we haveEN+1,N = E1,N , EN,N+1 =
EN,1; in the open-end case we setλ = 1, andEN+1,N = EN,N+1 = 0. Consider also the
following two matrices:

T+(c, d, λ) = L(c, d, λ)U−1(c, d, λ) T−(c, d, λ) = U−1(c, d, λ)L(c, d, λ). (3.3)
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Proposition 1. The flow (2.1) is equivalent to the following matrix differential equations:

L̇ = LB − AL U̇ = UB − AU (3.4)

which also imply that

Ṫ+ =
[
T+, A

]
Ṫ− =

[
T−, B

]
(3.5)

where

A(c, d, λ) =
N∑
k=1

(dk + ck−1)Ekk + λ
N∑
k=1

Ek+1,k (3.6)

B(c, d, λ) =
N∑
k=1

(dk + ck)Ekk + λ
N∑
k=1

Ek+1,k. (3.7)

Proposition 2. The map (2.7) is equivalent to the following matrix difference equations:

L̃ = A−1LB Ũ = A−1UB (3.8)

which also imply that

T̃+ = A−1T+A T̃− = B−1T−B (3.9)

where

A(c, d, λ) =
N∑
k=1

akEkk + hλ
N∑
k=1

Ek+1,k (3.10)

B(c, d, λ) =
N∑
k=1

bkEkk + hλ
N∑
k=1

Ek+1,k (3.11)

and the quantitiesbk are defined by

bk = ak
ak+1− hdk+1

ak − hdk = ak−1
ak + hck

ak−1+ hck−1
. (3.12)

Note that the compatibility of the two expressions forbk in (3.12) is an immediate
consequence of (2.8), and that from (3.12), (2.9) it follows that

bk = 1+ h(dk + ck)+O(h2). (3.13)

Proposition 3. The flow (2.2) is equivalent to the following matrix differential equations:

L̇ = LD − CL U̇ = UD − CU (3.14)

which also imply that

Ṫ+ =
[
T+, C

]
Ṫ− =

[
T−,D

]
(3.15)

where

C(c, d) = −λ−1
N∑
k=1

ck

dk+1
Ek,k+1 (3.16)

D(c, d) = −λ−1
N∑
k=1

ck

dk
Ek,k+1. (3.17)
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Proposition 4. The map (2.10) is equivalent to the following matrix difference equations:

L̃ = CLD−1 Ũ = CUD−1 (3.18)

which also imply that

T̃+ = CT+C−1 T̃− = DT−D−1 (3.19)

where

C(c, d, λ) =
N∑
k=1

Ekk + hλ−1
N∑
k=1

ckEk,k+1 (3.20)

D(c, d, λ) =
N∑
k=1

Ekk + hλ−1
N∑
k=1

dkEk,k+1 (3.21)

and the quantitiesck are defined by

ck = dk
dk − hdk−1

dk+1− hdk = dk+1
ck + hdk

ck+1+ hdk+1
. (3.22)

The compatibility of the two expressions forck in (3.22) is an immediate consequence
of (2.11), and from (3.22), (2.12) it follows that

ck = ck

dk+1
+O(h). (3.23)

The spectral invariants of the matricesT±(c, d, λ) serve as integrals of motion for the
flows (2.1), (2.2), as well as for the maps (2.7), (2.10). In particular, it is easy to see that
the Hamiltonian functions (2.4), (2.6) are spectral invariants of the Lax matrices:

H
(1)
+ = 1

2 tr(T 2
±) H

(1)
− = − tr log(T±)

H
(2)
+ = tr(T±) H

(2)
− = tr(T −1

± ).

Moreover, it can be proved [1] that the maps (2.7), (2.10) admit interpolation in both Poisson
brackets (2.3), (2.5) by Hamiltonian flows, the Hamiltonian fuctions being certain spectral
invariants of the matricesT±.

4. Parametrization of the linear bracket by canonically conjugate variables

In what follows we shall consider different Poisson maps from the standard symplectic
spaceR2N(x, p) into the Poisson spaceR2N(c, d), the latter being equipped with different
Poisson brackets, the former always being equipped with the canonical brackets

{xk, xj } = {pk, pj } = 0 {pk, xj } = δkj . (4.1)

We shall call such mapsparametrizationsof the corresponding Poisson bracket onR2N(c, d)

through canonically conjugate variables(x, p).
For example, the linear Poisson bracket (2.3) may be parametrized by the canonically

conjugate variables(x, p) according to the formulae

dk = pk − exp(xk − xk−1) ck = exp(xk+1− xk). (4.2)

Let us see how the equations of motion look in this parametrization. We start with
(2.1), (2.7).
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Obviously, the functionH(1)
+ takes the form

H
(1)
+ =

1

2

N∑
k=1

p2
k +

N∑
k=1

pk exp(xk+1− xk). (4.3)

Correspondingly, the flow (2.1) takes the form of canonical equations of motion

ẋk = ∂H(1)
+ /∂pk = pk + exp(xk+1− xk)

ṗk = −∂H(1)
+ /∂xk = pk exp(xk+1− xk)− pk−1 exp(xk − xk−1).

As an immediate consequence of these equations one obtains the Newtonian equations of
motion (1.1). A standard procedure allows one to find a Lagrangian formulation of these
equations. Indeed, one has to express

L =
N∑
k=1

ẋkpk −H (4.4)

in terms of(xk, ẋk), which in the present case leads to

L(1)+ (x, ẋ) =
1

2

N∑
k=1

(
ẋk − exp(xk+1− xk)

)2
. (4.5)

Note that the results of section 3 provide us with a Lax representation of our new lattice (1.1):
in the formulae of proposition 1 one need only set

ck = exp(xk+1− xk) dk = ẋk − exp(xk − xk−1)− exp(xk+1− xk). (4.6)

We now turn to the less straightforward case of discrete equations of motion.

Theorem 1. In the parametrization (4.2) the equations of motion (2.7) may be presented in
the form of the following two equations:

hpk = exp(̃xk − xk)− 1

1− h exp(xk − x̃k−1)
+ h exp(xk − xk−1)− h exp(xk+1− xk) (4.7)

hp̃k = exp(̃xk − xk)− 1

1− h exp(xk+1− x̃k) (4.8)

which also imply the Newtonian equations of motion (1.4).

Proof. The second equation of motion in (2.7), together with the parametrization
ck = exp(xk+1− xk), implies that the following quantity is constant, i.e. it does not depend
on k:

exp(−x̃k + xk)(ak + hck) = constant.

Choosing this constant to be equal to 1, we obtain

ak + hck = exp(̃xk − xk) (4.9)

hence

ak = exp(̃xk − xk)− h exp(xk+1− xk) = exp(̃xk − xk)
(
1− h exp(xk+1− x̃k)

)
. (4.10)

Substituting the last two formulae in (2.8), we obtain

ak − hdk = 1+ hck−1

ak−1
= 1

1− h exp(xk − x̃k−1)
(4.11)
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or

hdk = exp(̃xk − xk)
(
1− h exp(xk+1− x̃k)

)− 1

1− h exp(xk − x̃k−1)
. (4.12)

Now the first equation of motion in (2.7) may be rewritten with the help of (4.11) as

d̃k = dk 1− h exp(xk − x̃k−1)

1− h exp(xk+1− x̃k)
which, together with (4.24), implies

hd̃k = exp(̃xk − xk)
(
1− h exp(xk − x̃k−1)

)− 1

1− h exp(xk+1− x̃k) . (4.13)

Under the parametrizationdk = pk − exp(xk − xk−1) equations (4.12), (4.13) are equivalent
to (4.7), (4.8). �

The Lax representations for the system (1.4) is given by proposition 2, where the
expressions for the coefficientsck, dk, ak, bk in terms of the variablesxk and their discrete
time updates̃xk are given byck = exp(xk+1− xk), (4.12), (4.13), (4.10), and

bk = exp(̃xk − xk)
(
1− h exp(xk − x̃k−1)

)
.

(the last formula following from (3.12), (4.10), and (4.11)).
Note also that equations (4.7), (4.8) not only immediately imply (1.4) from the

introduction, but, moreover, allow one to find a Lagrangian interpretation of this equation.
Indeed, the general theory says that if the equations of motion are represented in the
Lagrange form

∂
(
3(̃x, x)+3(x, x˜))/∂xk = 0 (4.14)

then the momentapk canonically conjugate toxk are given by

pk = −∂3(̃x, x)/∂xk (4.15)

so that

p̃k = ∂3(̃x, x)/∂x̃k. (4.16)

Identifying equations (4.7) and (4.8) with (4.15) and (4.16), respectively, we see that the
Lagrange function for equation (1.4) can be chosen in the form

3
(1)
+ (̃x, x) =

N∑
k=1

ϕ(̃xk − xk)− h−1
N∑
k=1

log
(
1− h exp(xk+1− x̃k)

)− N∑
k=1

exp(xk+1− xk)

(4.17)

where

ϕ(ξ) = h−1
(
exp(ξ)− 1− ξ).

Obviously, this function serves as a finite difference approximation to (4.5).
We now turn to the equations of motion (2.2), (2.10), and find out how they look in the

parametrization (4.2).
The functionH(1)

− takes the form

H
(1)
− = −

N∑
k=1

log
(
pk − exp(xk − xk−1)

)
. (4.18)
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Correspondingly, the canonical equations of motion for the flow (2.2) take the form

ẋk = ∂H
(1)
−

∂pk
= − 1

pk − exp(xk − xk−1)

ṗk = −∂H
(1)
−

∂xk
= exp(xk+1− xk)
pk+1− exp(xk+1− xk) −

exp(xk − xk−1)

pk − exp(xk − xk−1)
.

As a consequence of these equations, one obtains

pk = − 1

ẋk
+ exp(xk − xk−1) ṗk = −ẋk+1 exp(xk+1− xk)+ ẋk exp(xk − xk−1)

and the Newtonian equations of motion (1.2) follow. A standard procedure, equation (4.4),
leads to a Lagrangian formulation of these equations. One has

L(1)− (x, ẋ) = −
N∑
k=1

log(ẋk)+
N∑
k=1

ẋk exp(xk − xk−1). (4.19)

In order to get a Lax representation of the lattice (1.2) one need only set

ck = exp(xk+1− xk) dk = − 1

ẋk
(4.20)

in the formulae of proposition 3.
Turning to the discrete equations of motion (2.10), we obtain:

Theorem 2. In the parametrization (4.2) the equations of motion (2.10) may be presented
in the form of the following two equations:

pk = − h

exp(̃xk − xk)− 1
+ exp(xk − x̃k−1) (4.21)

p̃k = − h

exp(̃xk − xk)− 1
+ exp(xk+1− x̃k)− exp(̃xk+1− x̃k)+ exp(̃xk − x̃k−1) (4.22)

which also imply the Newtonian equations of motion (1.4).

Proof. The second equation of motion in (2.10), rewritten as

c̃k = ck 1+ hdk/ck
1+ hdk+1/ck+1

together with the parametrizationck = exp(xk+1 − xk), implies that the following quantity
is constant, i.e. it does not depend onk:

exp(̃xk − xk)
(

1+ hdk
ck

)
= constant.

Choosing this constant to be equal to 1, we obtain

ck

dk
+ h = h

exp(̃xk − xk)− 1
(4.23)

hence

hdk = exp(xk+1− x̃k)− exp(xk+1− xk) = −exp(xk+1− x̃k)
(
exp(̃xk − xk)− 1

)
. (4.24)

The recurrence relation (2.11) implies

dk − hdk−1 = ck

dk
+ h (4.25)
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which, together with (4.24), (4.23), implies

dk = − h

exp(̃xk − xk)− 1
− exp(xk − x̃k−1)

(
exp(̃xk−1− xk−1)− 1

)
. (4.26)

Now we can rewrite the first equation of motion in (2.10), taking into account (4.25), (4.23):

d̃k = dk+1
exp(̃xk+1− xk+1)− 1

exp(̃xk − xk)− 1
.

The last equation, together with (4.26), implies

d̃k = − h

exp(̃xk − xk)− 1
− exp(xk+1− x̃k)

(
exp(̃xk+1− xk+1)− 1

)
. (4.27)

Under the parametrizationdk = pk−exp(xk−xk−1), equations (4.26), (4.27) are equivalent
to (4.21), (4.22). �

The Lax representations for the system (1.5) is given by proposition 4, where the
expressions for the coefficientsck, dk, dk, ck in terms of the variablesxk and their discrete
time updates̃xk are given byck = exp(xk+1− xk), (4.26), (4.27), (4.24), and

hck = −exp(xk+1− x̃k)
(
exp(̃xk+1− xk+1)− 1

)
(the last formula following from (4.24), (3.22) and (4.23)).

Identifying equations (4.21), (4.22) with (4.15), (4.16), respectively, we obtain the
Lagrange function for equation (1.5) in the form

3
(1)
− (̃x, x) = −h

N∑
k=1

ψ(̃xk − xk)+
N∑
k=1

[
exp(̃xk − x̃k−1)− exp(xk − x̃k−1)

]
where

ψ(ξ) =
∫ ξ

0

dη

exp(η)− 1
= log(exp(ξ)− 1)− ξ.

This function clearly is a finite difference approximation of (4.19).

5. Parametrization of the quadratic bracket by canonically conjugate variables

For completeness we give the results corresponding to another parametrization of
the variablesck, dk by means of canonically conjugate variablesxk, pk, namely the
parametrization leading to the quadratic bracket (2.5). The relativistic Toda lattice arises
in this manner. The corresponding formulae were given in [1], but in anad hoc manner,
without derivation. We take the opportunity of filling in this gap here.

The parametrization leading to the quadratic bracket (2.5) reads

dk = exp(pk) ck = g2 exp(xk+1− xk + pk) (5.1)

whereg2 ∈ R is a coupling constant.
In terms of these variables

H
(2)
+ =

N∑
k=1

exp(pk)
(
1+ g2 exp(xk+1− xk)

)
H
(2)
− =

N∑
k=1

exp(−pk)
(
1+ g2 exp(xk − xk−1)

)
.

(5.2)
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Hence the equations of motion corresponding to (2.1) take the canonical form

ẋk = ∂H(2)
+ /∂pk = exp(pk)

(
1+ g2 exp(xk+1− xk)

)
ṗk = −∂H(2)

+ /∂xk = g2 exp(xk+1− xk + pk)− g2 exp(xk − xk−1+ pk−1).

This can be put into a Newtonian form (1.3).
A standard procedure, equation (4.4), allows also to find a Lagrangian formulation of

these equations, with a Lagrange function

L(2)+ (x, ẋ) =
N∑
k=1

[ẋk log(ẋk)− ẋk] −
N∑
k=1

ẋk log
(
1+ g2 exp(xk+1− xk)

)
. (5.3)

The Lax representation for these equations are given by proposition 1 with

dk = ẋk/
(
1+ g2 exp(xk+1− xk)

)
ck = g2 exp(xk+1− xk)dk. (5.4)

Analogously, the canonical equations of motion corresponding to (2.2) are

ẋk = ∂H(2)
− /∂pk = −exp(−pk)

(
1+ g2 exp(xk − xk−1)

)
ṗk = −∂H(2)

− /∂xk = g2 exp(xk+1− xk − pk+1)− g2 exp(xk − xk−1− pk).
The Newtonian equations following from these are just the same as before (equation (1.3)).
They correspond, however, to a different form of Lagrange function:

L(2)− (x, ẋ) = −
N∑
k=1

[ẋk log(−ẋk)− ẋk] +
N∑
k=1

ẋk log
(
1+ g2 exp(xk − xk−1)

)
. (5.5)

The Lax representation for these equations is given by proposition 3 with the identifications

dk = −1+ g2 exp(xk − xk−1)

ẋk
ck = g2 exp(xk+1− xk)dk. (5.6)

We now turn to the discrete time systems (2.7), (2.10).

Theorem 3. In the parametrization (5.1) the map (2.7) takes the form of the following two
equations:

h exp(pk) =
(
exp(̃xk − xk)− 1

)(
1+ g2 exp(xk+1− xk)

) (1+ g2 exp(xk − xk−1)
)(

1+ g2 exp(xk − x̃k−1)
) (5.7)

h exp(p̃k) =
(
exp(̃xk − xk)− 1

)(
1+ g2 exp(xk+1− x̃k)

) . (5.8)

This also implies a Newtonian form (1.6) of the equations of motion.

Proof. From equations (2.7) it follows that

c̃k

d̃k
= ck

dk

ak+1+ hck+1

ak+1− hdk+1

ak − hdk
ak + hck .

Sinceck/dk = g2 exp(xk+1− xk), this implies that the following quantity is constant, i.e. it
does not depend onk:

exp(̃xk − xk)ak − hdk
ak + hck = constant.

Setting this constant equal to 1, we obtain

ak + hck
ak − hdk = exp(̃xk − xk).
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This implies

ak = hdk exp(̃xk − xk)+ ck
exp(̃xk − xk)− 1

= hdk
exp(̃xk − xk)

(
1+ g2 exp(xk+1− x̃k)

)
exp(̃xk − xk)− 1

. (5.9)

As a consequence, we obtain

ak + hck = h exp(̃xk − xk) dk + ck
exp(̃xk − xk)− 1

= hdk
exp(̃xk − xk)

(
1+ g2 exp(xk+1− xk)

)
exp(̃xk − xk)− 1

. (5.10)

Substituting equations (5.9), (5.10) in the recurrence relation (2.8), we obtain

ak − hdk = 1+ hck−1

ak−1
= 1+ g2 exp(xk − xk−1)

1+ g2 exp(xk − x̃k−1)
. (5.11)

Substituting expression (5.9) forak in the left-hand side of this formula, we arrive at

hdk =
(
exp(̃xk − xk)− 1

)(
1+ g2 exp(xk+1− xk)

) (1+ g2 exp(xk − xk−1)
)(

1+ g2 exp(xk − x̃k−1)
) . (5.12)

Furthermore, from the first equation of motion in (2.7) and (5.11) it follows that

hd̃k = exp(̃xk − xk)− 1

1+ g2 exp(xk+1− x̃k) . (5.13)

Now equations (5.7), (5.8) follow from (5.12), (5.13) under the parametrizationdk =
exp(pk). �

The Lax representation for the system (5.7), (5.8) is given by proposition 2 with the
following expressions throughxk, x̃k: (5.12), (5.13) fordk, d̃k, ck = g2 exp(xk+1 − xk)dk,
and

ak = exp(̃xk − xk)
(
1+ g2 exp(xk+1− x̃k)

)(
1+ g2 exp(xk+1− xk)

) (1+ g2 exp(xk − xk−1)
)(

1+ g2 exp(xk − x̃k−1)
) (5.14)

bk = exp(̃xk − xk). (5.15)

Indeed, equation (5.14) follows from (5.9), (5.12), and equation (5.15) follows from
(3.12), (5.14) and (5.11).

Identifying equations (5.7) and (5.8) with (4.15), (4.16), we obtain a Lagrange function

3
(2)
+ (̃x, x) =

N∑
k=1

8(̃xk − xk)+
N∑
k=1

[
9(xk+1− x̃k)−9(xk+1− xk)

]
(5.16)

where the two functions8(ξ),9(ξ) are defined by

8(ξ) =
∫ ξ

0
log

∣∣∣∣exp(η)− 1

h

∣∣∣∣ dη 9(ξ) =
∫ ξ

0
log

(
1+ g2 exp(η)

)
dη. (5.17)

It is easy to see that this Lagrangian function serves as a finite difference approximation
to (5.3).
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Theorem 4. In the parametrization (5.1) the map (2.10) takes the form of the following
two equations:

exp(pk) =
h
(
1+ g2 exp(xk − x̃k−1)

)(
1− exp(̃xk − xk)

) (5.18)

exp(p̃k) =
h
(
1+ g2 exp(̃xk − x̃k−1)

)(
1− exp(̃xk − xk)

) (
1+ g2 exp(xk+1− x̃k)

)(
1+ g2 exp(̃xk+1− x̃k)

) . (5.19)

This implies the same Newtonian equations of motion (1.6) as for the map (2.7).

Proof. From equations (2.10), (2.11) we deduce that

c̃k

d̃k
= ck+1

dk+1

ck + hdk
dk − hdk−1

dk+1− hdk
ck+1+ hdk+1

= ck+1

dk+1

dk

dk+1
.

Becauseck/dk = g2 exp(xk+1−xk), this implies that the following quantity does not depend
on k:

dk exp(̃xk − xk+1) = constant.

Setting this constant equal tog2, we obtain

dk = g2 exp(xk+1− x̃k). (5.20)

Substituting this formula in the recurrence (2.11), we obtain

dk =
h
(
1+ g2 exp(xk − x̃k−1)

)(
1− exp(̃xk − xk)

) . (5.21)

Equations (5.18), (5.21) also imply that

dk − hdk−1 =
h
(
1+ g2 exp(̃xk − x̃k−1)

)(
1− exp(̃xk − xk)

) . (5.22)

This last formula, together with the first equation in (2.10), implies that

d̃k =
h
(
1+ g2 exp(̃xk − x̃k−1)

)(
1− exp(̃xk − xk)

) (
1+ g2 exp(xk+1− x̃k)

)(
1+ g2 exp(̃xk+1− x̃k)

) . (5.23)

Finally, equations (5.18), (5.19) are equivalent to (5.21), (5.23), due to the parametrization
dk = exp(pk). �

The Lax representation for the system (5.18), (5.19) is given by proposition 4 with the
following expressions throughxk, x̃k: (5.21), (5.23) fordk, d̃k, ck = g2 exp(xk+1 − xk)dk,
(5.20) fordk, and

ck = g2 exp(xk+1− x̃k)
(
1− exp(̃xk+1− xk+1)

)(
1− exp(̃xk − xk)

) (
1+ g2 exp(̃xk − x̃k−1)

)(
1+ g2 exp(̃xk+1− x̃k)

) .
The last formula follows from (3.22), (5.20) and (5.22).

Identifying equations (5.18) and (5.19) with (4.15), (4.16), we obtain a Lagrange
function

3
(2)
− (̃x, x) = −

N∑
k=1

8(̃xk − xk)+
N∑
k=1

[
9(̃xk − x̃k−1)−9(xk − x̃k−1)

]
(5.24)

with the same functions8(ξ),9(ξ) (equation (5.17)) as before. It is easy to see that this
Lagrangian function is a finite difference approximation to (5.5).
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6. Parametrization of the mixed brackets by canonically conjugate variables

It turns out that there exist still another parametrization of the variables(c, d) by canonically
conjugate variables(x, p) leading to interesting discretizations. As we shall see, these
parametrizations lead to Poisson brackets which are linear combinations of the two
homogeneous ones (2.3) and (2.5). In some sense (which will be clear from the proofs of
the theorems below) these parametrizations are specially designed to obtain nice Newtonian
equations from the maps (2.7), (2.10).

We start with the parametrization leading to the linear combination{·, ·}1 + h{·, ·}2,
which turns out to admit a nice discrete Newtonian formulation when applied to (2.7).
Clearly, we obtain an alternative discretization of the lattice (1.1) in this way. Consider the
following parametrization:

hdk = exp(hpk)− 1− h exp(xk − xk−1) ck = exp(xk+1− xk + hpk). (6.1)

(Obviously, in the limith→ 0 we recover the parametrization of the linear bracket (4.2)).
Simple calculations show that the Poisson brackets between(c, d) induced by (6.1) read:

{ck+1, ck} = hck+1ck {dk+1, dk} = −ck
{dk+1, ck} = ck + hdk+1ck {dk, ck} = −ck − hdkck

which is exactly{·, ·}1+ h{·, ·}2. Let us look at the equations of motion generated by these
h-dependent Poisson brackets.

Theorem 5. In the parametrization (6.1) the map (2.7) takes the form of the following two
equations:

exp(hpk) = exp(̃xk − xk)
(
1+ h exp(xk − xk−1)

)(
1− h exp(xk − x̃k−1)

)(
1+ h exp(xk+1− xk)

) (6.2)

exp(hp̃k) = exp(̃xk − xk)
(
1− h exp(xk+1− x̃k)

)
. (6.3)

This implies the Newtonian equations of motion (1.7).

Proof. The crucial observation lies in the following: from relations (6.1) we can extract
the following consequence:

exp(hpk) = 1+ hdk + hck−1

exp(hpk−1)
.

Comparing this with (2.8), we see thatak and exp(hpk) satisfy one and the same recurrence
relation. Due to the uniqueness of its solution, they must coincide, so that we obtain

ak = exp(hpk). (6.4)

As a consequence, we immediately obtain

ak − hdk = 1+ h exp(xk − xk−1) ak + hck = exp(hpk)
(
1+ h exp(xk+1− xk)

)
. (6.5)

These expressions, together with (6.1), when substituted in (2.7), allow us to rewrite the
latter in the form

exp(hp̃k)− h exp(̃xk − x̃k−1) = exp(hpk)
1+ h exp(xk+1− xk)
1+ h exp(xk − xk−1)

− h exp(xk+1− xk)

exp(̃xk+1− x̃k + hp̃k) = exp(xk+1− xk + hpk+1)
1+ h exp(xk+2− xk+1)

1+ h exp(xk+1− xk) .
(6.6)
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The formula arising when exp(hp̃k) is excluded from these two equations can, after some
manipulation, be written as

exp(xk+1− x̃k+1+ hpk+1)
1+ h exp(xk+2− xk+1)

1+ h exp(xk+1− xk) + h exp(xk+1− x̃k)

= exp(xk − x̃k + hpk) 1+ h exp(xk+1− xk)
1+ h exp(xk − xk−1)

+ h exp(xk − x̃k−1).

So, the expression on the right-hand side is constant, i.e. it does not depend onk. Setting
this constant equal to 1, we arrive at equation (6.2). Substituting equation (6.2) in (6.6), we
obtain equation (6.3). �

It is not difficult to extract from this proof the expressions for the coefficients of the
matrices forming the Lax representation of the system (1.7) following on from proposition 2.
Also a Lagrangian formulation of this system can be obtained in a standard way: the
Lagrange function corresponding to (6.2), (6.3) is

3
(mixed)
+ (̃x, x) =

N∑
k=1

(̃xk − xk)2
2h

− h−1
N∑
k=1

[
φ1(xk+1− x̃k)+ φ2(xk+1− xk)

]
(6.7)

where

φ1(ξ) =
∫ ξ

0
log
(
1− h exp(η)

)
dη φ2(ξ) =

∫ ξ

0
log
(
1+ h exp(η)

)
dη.

This is a finite difference approximation to (4.5) that differs from (4.17).
We now turn to another parametrization that leads to a mixed Poisson bracket, namely

to the bracket{·, ·}2− h{·, ·}1. The corresponding formulae are

dk = exp(pk)+ h
(
1+ g2 exp(xk − xk−1)

)
ck = g2 exp(xk+1− xk + pk). (6.8)

As can easily be calculated, the resulting Poisson brackets between the variables(c, d) are:

{ck+1, ck} = ck+1ck {dk+1, dk} = −hck
{dk+1, ck} = dk+1ck − hck {dk, ck} = −dkck + hck

i.e. the linear combination{·, ·}2 − h{·, ·}1. The equations arising from (2.10) under this
parametrization, naturally approximate the relativistic Toda lattice (1.3).

Theorem 6. In the parametrization (6.8) the map (2.10) takes the form of the following
two equations:

exp(pk) =
h
(
1+ g2 exp(xk − x̃k−1)

)(
exp(−x̃k + xk)− 1

) (6.9)

exp(p̃k) =
h
(
1+ g2 exp(̃xk − x̃k−1)

)(
exp(−x̃k + xk)− 1

) (
1+ g2 exp(xk+1− x̃k)

)(
1+ g2 exp(̃xk+1− x̃k)

) . (6.10)

This implies the Newtonian equations of motion (1.8).

Proof. This time the crucial observation lies in the following: as a consequence of relations
(6.8) we have:

ck

g2 exp(xk+1− xk) = dk − h− hg
2 exp(xk − xk−1).
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Comparing this with (2.11), we see thatdk andg2 exp(xk+1− xk) satisfy one and the same
recurrence relation. Due to the uniqueness of its solution, they must coincide, so that we
obtain

dk = g2 exp(xk+1− xk). (6.11)

As a consequence, we immediately obtain

dk − hdk−1 = exp(pk)+ h ck + hdk = g2 exp(xk+1− xk)
(
exp(pk)+ h

)
. (6.12)

Substituting these expressions, together with (6.8), in (2.10), we can express the latter in
the form

exp(p̃k)+ hg2 exp(̃xk − x̃k−1) = exp(pk)+ hg2 exp(xk+1− xk) exp(pk)+ h
exp(pk+1)+ h

exp(̃xk+1− x̃k + p̃k) = exp(xk+1− xk + pk+1)
exp(pk)+ h

exp(pk+1)+ h.
(6.13)

Excluding exp(p̃k) from these two equations, and after some manipulation, we obtain the
formula that can be written as

exp(xk+1− x̃k+1+ pk+1)− hg2 exp(xk+1− x̃k)
exp(pk+1)+ h

= exp(xk − x̃k + pk)− hg2 exp(xk − x̃k−1)

exp(pk)+ h .

So, the expression on the right-hand side is constant, i.e. it does not depend onk. Setting
this constant equal to 1, we arrive at (6.9), which is also equivalent to

exp(pk)+ h =
h exp(−x̃k + xk)

(
1+ g2 exp(̃xk − x̃k−1)

)
exp(−x̃k + xk)− 1

. (6.14)

Finally, substituting (6.14) in (6.13), we obtain

exp(p̃k) = exp(pk+1)

(
exp(−x̃k+1+ xk+1)− 1

)(
exp(−x̃k + xk)− 1

) (
1+ g2 exp(̃xk − x̃k−1)

)(
1+ g2 exp(̃xk+1− x̃k)

)
which, together with (6.9), implies (6.10). �

The Lax representation for (1.8) is given by proposition 4; it is not difficult to extract
from the proof above the expressions for the entries of the matrices forming the Lax
representation. Also, the Lagrangian formulation of (1.8) easily follows from (6.9), (6.10).
The corresponding Lagrange function is

3
(mixed)
− (̃x, x) =

N∑
k=1

8(−x̃k + xk)+
N∑
k=1

[
9(̃xk − x̃k−1)−9(xk − x̃k−1)

]
(6.15)

with the functions8(ξ),9(ξ) given in (5.17).
Let us note that, although equations (1.6), (1.8) are very similar, there exist no obvious

changes of variables bringing one of them into another. The only way to do this, i.e. to
connect the two corresponding sets of(xk, x̃k), is to identify the corresponding(ck, dk),
given for (1.6) by (5.1), (5.18), (5.19), and for (1.8) by (6.8), (6.9), (6.10). The resulting
change of variables is a rather non-trivial Bäcklund transformation.
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7. Conclusion

The main message of the present paper is as follows. The field of integrable systems of
classical mechanics, even in its most extensively studied parts, is far from being exhausted.
Namely, the well known flows of the relativistic Toda hierarchy (2.1), (2.2) have a much
richer dynamical content than is usually assumed. This is even truer for the recently
derived discretizations (2.7), (2.10) of these flows. Namely, different parametrizations of
the variables(c, d) by canonically conjugate variables(x, p) (corresponding to the bi-
Hamiltonian structure of the relativistic Toda hierarchy) allowed us to derive two new
integrable continuous time lattices and four new integrable discretizations, in addition to the
previously known ones. Let us summarize the relations between the systems considered in
the present paper:

• The lattices (1.1) and (1.3) arise from the flow (2.1) under two different parametrizations
of (ck, dk) by canonically conjugate variables(xk, pk). Hence these two lattices
are connected by means of a highly non-trivial Bäcklund transformation. This
transformations connects two sets of variables(xk, ẋk) and arises when identifying the
variables(ck, dk) in equations (4.6) and (5.4).

• Analogously, the lattices (1.2) and (1.3) arise both from one and the same flow (2.2).
The B̈acklund transformation connecting the variables(xk, ẋk) of these two lattices
arises when identifying the variables(ck, dk) in equations (4.20) and (5.6).

• The discrete flow (2.7) gives rise to the following three discrete integrable systems:
(1.4), (1.6), (1.7). They all are related by the Bäcklund transformations which connect
the different variables(xk, x̃k) introduced by equations (4.2), (4.7) for the system (1.4);
by equations (5.1), (5.7) for the system (1.6); and by equations (6.1), (6.2) for the system
(1.7).

• Finally, the discrete flow (2.10) also gives rise to three discrete integrable systems:
(1.5), (1.6), (1.8). The B̈acklund transformations which connect the corresponding
sets of variables(xk, x̃k) are obtained when identifying the variables(ck, dk) given
by expressions (4.2), (4.21) for the system (1.5); by expressions (5.1), (5.18) for the
system (1.6); and by expressions (6.8), (6.9) for the system (1.8).

The methods of this paper can also be used in the simpler situation of the usual Toda
lattice, where they also lead to interesting findings. These will be reported in a separate
paper.
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